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Abstract

Mixtures risk assessment needs an efficient integration of in vivo, in vitro, and in silico data with 

epidemiology and human studies data. This involves several approaches, some in current use and 

others under development. This work extends the Agency for Toxic Substances and Disease 

Registry physiologically based pharmacokinetic (PBPK) toolkit, available for risk assessors, to 

include a mixture PBPK model of benzene, toluene, ethylbenzene, and xylenes. The recoded 

model was evaluated and applied to exposure scenarios to evaluate the validity of dose additivity 

for mixtures. In the second part of this work, we studied toluene, ethylbenzene, and xylene (TEX)-

gene-disease associations using Comparative Toxicogenomics Database, pathway analysis and 

published microarray data from human gene expression changes in blood samples after short- and 

long-term exposures. Collectively, this information was used to establish hypotheses on potential 

linkages between TEX exposures and human health. The results show that 236 genes expressed 

were common between the short- and long-term exposures. These genes could be central for the 

interconnecting biological pathways potentially stimulated by TEX exposure, likely related to 

respiratory and neuro diseases. Using publicly available data we propose a conceptual framework 

to study pathway perturbations leading to toxicity of chemical mixtures. This proposed 

methodology lends mechanistic insights of the toxicity of mixtures and when experimentally 

validated will allow data gaps filling for mixtures’ toxicity assessment. This work proposes an 

approach using current knowledge, available multiple stream data and applying computational 

methods to advance mixtures risk assessment.
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Environmental toxic substances such as volatile organic compounds (VOCs) include a 

variety of chemicals, some of which have short- and long-term adverse health effects. 

Volatile organic compounds exposures may increase risks for cancer and exacerbate asthma 

and other adverse respiratory effects (Bolden et al., 2015; Dehghani et al., 2018; Lim et al., 

2014). In fact, numerous studies in humans identified the respiratory tract as a sensitive 

target of individual VOCs such as benzene, toluene, ethylbenzene, and xylenes and their 

mixture (BTEX) (ATSDR, 2004, 2007, 2010, 2017). However, the mechanistic 

understanding of these health effects is lacking.

Studies have suggested that prolonged occupational exposure to VOCs may result in 

increased levels of biomarkers of oxidative stress, DNA damage and dysregulation of 

cellular antioxidant defense and trigger processes leading possibly to carcinogenesis 

(ATSDR, 2004; Lundberg and Milatou-Smith, 1998). Epidemiological studies have reported 

adverse outcomes to VOCs exposure even if no biological and occupational exposure limits 

are exceeded (Moro et al., 2010).

Hong and colleagues have identified time-dependent biomarkers and effects of exposure to 

toluene, ethylbenzene, and xylenes (TEX) using high-throughput methods, such as 

microarray analysis (Hong et al., 2016). They reported short-term exposure changes in the 

expression of genes related to the respiratory, kidney, liver, and immune system at short-term 

exposure. In contrast, long-term exposure was related to genes associated with nervous 

system and hormone imbalance, and shown to be related to the cell cycle, cell growth such 

as cancerrelated processes.

Available toxicogenomics databases and computational systems biology tools facilitate the 

identification of important toxicity pathways and molecules from large data sets. These tasks 

can be extremely laborious when performed by a classical literature search. Computational 

systems biology offers more advantages than just providing a high-throughput literature 

search engine. Experimentally identified genetic targets data of the specific chemical(s) of 

interest can be uploaded and overlapped into biological networks to gain insights that can be 

used to formulate hypotheses to link chemical exposure and human diseases. Consequently, 

this information can also be applied for designing more intelligent animal and cell-based 

laboratory experiments to test the formulated hypotheses.

Physiologically based pharmacokinetic (PBPK) models have been used to organize pertinent 

chemical, physical, and pathological information to study characteristics of a chemical 

including the concentrations of chemicals in various organs/ tissues. Because of their 

versatility and potential use, numerous PBPK models have been developed and published. 

However, use of different simulation platforms among various developers can limit model 

acceptance or use. This limitation also restricts standardized application of models in public 

health practice. Even experienced PBPK modelers sometimes face problems when trying to 

apply published PBPK models that lack key information or equations. Apart from educating 
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and training, research is needed to make PBPK models more accessible and in easy-to-use 

formats. Having models in an easier-to-use, standardized format capable of simulating real 

life scenarios will greatly increase their value and use, thus enhancing integration of 

innovative tools and scientific advances into decision-making processes. The Agency for 

Toxic Substances and Disease Registry (ATSDR) has developed a PBPK model toolkit, 

these are being recoded into a single language, Berkeley Madonna (Emond et al., 2017; 

Mumtaz et al., 2012; Ruiz et al., 2010) and are validated and evaluated as part of the 

methods development.

For mixtures, PBPK is useful to determine the internal dose based on the interaction among 

the 3 chemicals in the mixture. In addition, the genes expression drives the modification of 

the biological pathways preceding a disease. Changes in genes expression represent a 

sensible toxicity endpoint providing information on what can be affecting by the mixture 

exposure scenarios. There have been several attempts to use genomics and PBPK models to 

assess network and pathways affected by individual chemical exposure to establish links 

among chemical-gene-disease interactions and key biological events (Andersen et al., 

2017a,b; Maldonado et al., 2017; Sier et al., 2017).

In this work, available mixtures PBPK models, toxicogenomic databases, systems biology 

tools, and published gene expression data are used to gain insights into the pathways 

affected by exposure to TEX mixtures.

The aims of this study were to (1) share a new recoded PBPK model for BTEX, part of our 

toolkit at the ATSDR, with the scientific community, (2) explore the use of individual or 

combined chemical published data from various sources to generate or hypothesize the 

potential mechanisms of toxicity of the TEX mixture, and (3) introduce methodology for 

new testable hypotheses to address some of the chemical mixtures data gaps previously 

identified by federal agencies.

MATERIALS AND METHODS

We took a 2-pronged approach in this exploratory study. First, we recoded an existing PBPK 

VOC mixture model for BTEX using Berkeley Madonna software and assessed its 

reproducibility. In the second step, we used toxicogenomic and computational systems 

biology tools and available human gene expression data after short- and long-term exposure 

TEX mixture to gain mechanistic insights of molecular and cellular processes leading to the 

toxicity of TEX mixture (Figure 1).

Recoding, Evaluation, and Application of the BTEX PBPK Model

Model structure and physiological parameters.—We reviewed previously published 

human VOCs mixture PBPK models (Dennison et al., 2005; Haddad et al., 1999, 2000, 

2001; Marchand et al., 2015, 2016; Tardif et al., 1995, 1997). We recoded the BTEX model 

using Berkeley Madonna software (see Supplementary) version 8.3 for Windows (University 

of California at Berkeley, California). The recoded PBPK model presented here adapts the 

original model developed in AcslX (Haddad et al., 1999) using human physiological 

parameter values given in Table 1 (Marchand et al., 2015; Tardif et al., 1995, 1997). This 
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model was used to predict alveolar air concentration levels in human volunteers exposed for 

7h to toluene (17ppm), ethylbenzene (33ppm), and m-xylene (33ppm) alone or in 

combination.

Model verification.—The model was assessed by comparing generated simulations to the 

published model and with human data sets (Tardif et al.,1997). We weighed the performance 

of the model by calculating the percent median absolute performance error (MAPE%) based 

on estimates of performance error (PE) between the recoded model and the experimental 

data (Ruiz et al., 2011), as follows:

PE = Cmeasured − Cpredicted/Cpredicted ∗ 100% . (1)

Therefore, MAPE% = median (|PE1|, |PE2|, |PE3|……|PEi|…. |PEn|), where PEi is the 

performance error measure of the model prediction and data at time point i. We assessed the 

measure for the model bias by considering the median of the true values of PE. This measure 

is calculated as MPE% = (PE1, PE2, PE3…PEi…. PEn). The accuracy of the prediction was 

evaluated by percent root median-square performance error (RMSPE%), as follows:

RMSPE % = ∑i = 1
n PE2

n , (2)

where n is the total number of data points. We also calculated the correlation coefficient 

between Cmeasured and Cpredicted.

Model Application

Biological hazard indexes.—Traditionally, a hazard index (HI) is calculated using 

estimated exposures and allowable levels in environmental media. The American 

Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values 

(TLVs), and Biological Exposure Indices (BEIs) are intended for use by industrial hygienists 

in making decisions regarding safe levels of exposure to various chemical substances and 

physical agents found in the workplace. The TLVs and BEIs represent conditions under 

which ACGIH believes that nearly all workers may be repeatedly exposed without adverse 

health effects. BEIs are guidance values for assessing biological monitoring results (https://

www.acgih.org/tlv-bei-guidelines/policies-procedures-presentations/overview; last accessed 

December 2019). The human PBPK models enable calculation of biological hazard indexes 

(BHIs). A BHI is based on estimated internal dose rather than applied dose.

We used the human PBPK model mixture to calculate BHIs for 8-h exposures to varying 

simulated mixtures of the 3 chemicals (5–40ppm toluene, 10–50ppm m-xylene, and 10–

50ppm ethylbenzene) (Haddad et al., 1999; Tardif et al., 1997). We used the following 

equation to calculate the BHIs:

BHI = ∑
i − 1

n SCi
BEIi

, (3)

Ruiz et al. Page 4

Toxicol Sci. Author manuscript; available in PMC 2021 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.acgih.org/tlv-bei-guidelines/policies-procedures-presentations/overview
https://www.acgih.org/tlv-bei-guidelines/policies-procedures-presentations/overview


where SCi is the simulated venous blood concentration of the component chemical (i) and 

BEIi is the biological exposure index or blood concentration of the component chemical in a 

healthy person (ie, at the TLV for toluene [50ppm], m-xylene [100ppm], and ethylbenzene 

[100ppm]). Simulated venous blood concentration (SCi) values were predicted for the 

mixture components using the ternary mixture PBPK model. Individual chemical PBPK 

models were used to calculate the TLV-based BEIs. The BHIs were subsequently compared 

with exposure concentration-based HI values for each mixture, calculated as follows, where 

Ei is the exposure level of the chemical:

HI = ∑
i − 1

n Ei
TLVi

. (4)

Exploration of various exposure scenarios: resting and working.—Under 

Occupational Safety and Health Administration and American Conference of Governmental 

Industrial Hygienists guidelines, the mixture formula (unity calculation, UC) is used to 

evaluate exposures to mixtures of chemicals that cause similar toxicities (Dennison et al., 

2005). Using this methodology described in the guidelines, the overall exposure is 

acceptable if exposures are reduced in proportion to the number of chemicals and their 

respective exposure limits. Most of the occupational exposure limits are derived from studies 

of humans or animals at rest, often using inhaled concentrations to estimate external 

exposures. For a variety of exposures to toluene, ethylbenzene, or xylene, UCs were 

performed, using the equation below (Dennison et al., 2005):

UC = ∑ Ui
OULi

. (5)

Ui is the exposure level of each chemical and OULi is the occupational expose limit for each 

chemical. We used the human PBPK model to examine the potential toxicity from 

coexposure to TEX under resting and working conditions. Instead of using inhaled 

concentrations to estimate external exposure, we utilized the PBPK model to determine the 

blood concentration of each chemical and in the UCs. The UCs were based on internal doses 

of each chemical instead of the traditional external exposure level, thus considering 

nonlinear PK and the influence of PK interactions on cumulative dose. The chemical effects 

are assumed to result from systemic absorption and exposure of internal organs to the blood 

and not from direct toxicity of inhaled concentration at the port of entry.

Exploration of microarray data.—An upcoming area of research is to input the 

potential concentrations derived from high-throughput assays such as microarray data, into 

the existing PBPK model to back-extrapolate external exposure concentrations that would 

produce equivalent target tissue concentrations research. Through an interactive process both 

the PBPK modeling and the experimental testing can be improved and/or calibrated. We 

used the PBPK model to initially simulate the starting points of equivalent external exposure 

for controls, short- and long-term exposure groups as reported by Hong et al., to estimate 

potential distribution of blood concentrations (more reflective of internal estimated dose). 
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Initially the simulation was performed for one-third TLVs doses. Following this, different 

scenarios for incremental changes in TLVs were simulated.

Toluene, Ethylbenzene, Xylene, and Genes Interactions

We examined possible mechanisms by which TEX might interact to cause potential health 

effects using Comparative Toxicogenomics Database (CTD) and MetaCore.

Chemical-gene-disease interactions using CTD.—The CTD(http://ctdbase.org; last 

accessed December 2019) contains more than 1 million curated chemical-gene interactions 

and more than 15 million curated and inferred gene-disease interactions (Davis et al., 2017; 

Grondin et al., 2018). The National Institute of Environmental Health Sciences funds the 

database, which can be used to identify genes or environmental chemicals that commonly 

affect the proteins that they code for. These sets of common genes can be further filtered to 

only include genes that have been associated with a condition or disease. This approach uses 

bioinformatics to identify toxicogenomic interactions that are promising targets for further 

study. The CTD was used to identify (1) top curated genes for each of the 3 VOCs, toluene, 

xylene, and ethylbenzene, (2) genes in common to them, and (3) top interacting curated 

diseases in common to all the individually VOCs.

We used the CTD “VennViewer” function to compare the genes associated with each of the 

VOCs, TEX. Only genes with curated associations with each chemical were included. Genes 

with an inferred relationship or those with no known effects were excluded. The candidate 

genes associated with each of 3 chemicals were identified; these genes were then used as an 

input for the “Set Analyzer,” which identifies common genes that have an association with 

specific diseases or health conditions. The list of genes that were common amongst the 3 

VOCs was imported to MetaCore (version 6.36 build 69400) software to perform an 

enrichment analysis (https://clarivate.com/cortellis/solutions/early-research-intelligence-

solutions/; last accessed December 2019). MetaCore is a tool for functional analysis of 

different “omics” data, including gene expression data. One of MetaCore’s relevant 

applications for pathway analysis is the Enrichment Analysis Workflow, which allows the 

users to understand the biological impact of their data by visualizing the intersection of their 

data set to curated ontologies which are ranked by significance based on p value 

(hypergeometric mean calculation).

These curated ontologies (eg, pathway, maps, toxicity biomarkers, networks) are primarily 

derived from peer-reviewed literature and from the Gene Ontology lexicon.

Enrichment analysis on lung-specific ontologies for TEX microarray data 
using MetaCore.—Hong and colleagues reported the effects of TEX exposure in humans 

on gene expression data for short-term (workers exposed to VOCs for less than 10years), 

long-term (workers exposed to VOCs for more than 10years), and no exposure (control) 

(Hong et al., 2016). We downloaded their microarray data from the GEO Database 

(www.ncbi.nlm.nih.gov/geo/; last accessed December 2019) ID GSE68906, which describes 

the differentially expressed genes (DEGs) in human blood samples collected from industry 

workers at a factory and chemical production company in Ansan, Korea (Hong et al., 2016). 

The gene expression data were imported as experiment files into MetaCore, and genes 
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showing statistically significant expression changes within the exposed groups were 

compared.

MetaCore’s system’s toxicology module, which utilizes organ-specific toxicity biomarkers 

curated for different ontologies, was used to perform enrichment analysis on lung-specific 

ontologies. We identified and rank cellular pathways and processes most impacted in this 

tissue by the gene expression changes in the exposed group.

Our enrichment analysis focused not only on the genes that were common to both long- and 

short-term exposures, but also on the genes that were unique to the long-term exposure.

RESULTS

Recoding, Evaluation, and Application of the BTEX PBPK Model

The recoded BTEX PBPK model was assessed for predictability and applicability. By visual 

comparison, the recoded model simulations were in good agreement with those of the 

original model as well the experimental data (Figure 2). The simulations were 

superimposable suggesting a completely matching performance. We also evaluated the 

model performance by calculating the MAPE%, percent median performance error (MPE

%), and RMSPE%, based on estimates of PE (Table 2). The results suggested that the model 

could simulate and accurately predict the available experimental data and obtained a good 

fit, as shown. Correlation coefficients (R2) between experimental and predicted data using 

the recoded model were above 92% for single VOCs and between 89% and 92% for 

respective VOC mixtures.

Overall, the recoded PBPK model predictions and experimental data indicated that blood 

and alveolar air concentrations during and after exposure to the ternary mixture were similar 

to those measured during and after exposure to each chemical alone. A statistically 

significant increase was found for blood concentrations of xylene during the simulated 

mixture exposure but not for toluene and ethylbenzene (Supplementary Table 1). This 

change was not reflected by the alveolar air concentration data obtained during the same 

experiment (Figure 2). These results also indicated that the ternary mixture did not 

significantly modify the metabolism, competitive metabolism inhibition, of the individual 

components compared with exposure to the individual VOCs alone.

Using our recoded PBPK model, we calculated BHIs for 8-h exposures to varying simulated 

mixtures: 5–40ppm toluene, 10–50ppm m-xylene, and 10–50ppm ethylbenzene 

(Supplementary Table 2). Because the PBPK model used to predict the SCi values is 

interactions-based, the BHI values (based on blood levels) were expected to be the same as 

the HI values (based on exposure levels) if the toxicokinetic interactions among the mixture 

components are negligible.

Toluene, Ethylbenzene, Xylene, and Genes Interactions

Common genetic targets identified for TEX using CTD.—Our CTD analysis 

identified a list of 24 genes common among TEX (Figure 3A). Individually, 826 genes were 

associated with toluene, 109 genes with ethylbenzene, and 55 genes with xylenes. We have 
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also identified 2 conditions, potentially associated with the overlap of the curated diseases 

potentially cause by these 3 chemicals that include prenatal exposure delayed effects and 

micronuclei chromosomal defects (Figure 3B). To understand what pathways are impacted 

by the list of 24 genes, we performed pathway enrichment analysis using MetaCore. The 

names, symbols, and functions of the 24 genes are shown in Figure 3A.

Based on our enrichment analysis, a joint mechanism of action was proposed for the 

combined exposure to TEX mixture. The pathways map shows cross interactions between 

the downstream targets (Supplementary Figure 1). The analysis shows that the top score 

enriched pathway map is involved in neural cell death and mitochondrial dysfunction 

(Supplementary Figure 1). Ubiquitin with dinucleotide deletion acts as a strong inhibitor of 

the proteasome. As a result, the pool of available proteasomes becomes substantially 

depleted and not enough for proper degradation of tumor protein (p53), protein kinase C-

alpha (PKC-alpha), and mutant Huntingtin. Slow degradation of PKC-alpha results in 

activation of N-methyl-D-aspartate subclass of ionotropic glutamate receptor (NMDA 

receptor), followed by mitochondrial dysfunction, alterations in neurotransmitter systems, 

and neuronal cell death (Fong et al., 2002; Zemskov and Nukina, 2003). In addition, 

impairing of proteasomal function leads to alterations in neurotransmitter pathways (Wang 

et al., 2008). These common activation processes can influence or activate each other. 

Although this computational systems biology-generated global pathway map cannot be 

considered as a proof of causal linkages without further experimental validation, it provides 

justification for the mechanistic hypothesis and contributes to new interpretation linking 

available published toxicology and disease information domains.

Gene expression data and enrichment analysis on lung-specific ontologies 
using MetaCore.—To understand the toxic impact of VOCs to the target organ lung, we 

used the system’s toxicology module of MetaCore to compare gene expression data 

collected from blood samples of individuals exposed for short- and long-term to TEX. The 

comparison analysis demonstrates that 236 genes are common between the short-term (1) 

and long-term exposure groups (2) gene expression (Figure 4A). It also shows that 242 

genes are unique to short-term exposure (1, orange bar), and 225 genes are unique to long-

term exposure (2, blue bar). These findings help explain the overall biological themes 

represented in each of the studied exposure group networks. The results of the enrichment 

analysis ranked pathway maps specifically curated for lung toxicity. Ranking was 

determined by the genes that were common to blood samples of individuals exposed to 

short- and long-term exposures (Figure 4B, blue stripe bars) and presented from highest log 

p value to the lowest. Orange and blue bars correspond to log p values that are unique to 

enrichment of genes from short- and long-term exposures, respectively.

The 2 top-scored lung toxicity pathways (maps with the lowest p values), based on the 

enrichment distribution sorted by “common” set, showed common themes related to 

processes involved in respiratory, developmental, and the immune systems (Figure 4B). The 

2 top pathway maps are Ephrin signaling and CD28 signaling; these are involved in cell 

adhesion, cell proliferation, and immune response. Ephrin receptors are major participants in 

the regulation of cell movement, cell adhesion, and cell survival, whereas CD28 plays a key 

role in many T-cell processes related to immune signaling pathways.
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The first top-scored map (corresponding to the lowest p value) shows Ephrin-mediated 

signaling (Figure 4B). Short- and long-term exposures upregulate the Ephrin A receptors, as 

indicated by the red thermometers (Nos 1 and 2, respectively) and downregulate Ephrin B 

receptors as indicated by the blue thermometers (Nos 1 and 2) as shown in Supplementary 

Figure 2. Ephrin B proteins have conserved cytoplasmic tyrosine residues that are 

phosphorylated upon interaction with an EphB receptor and may transduce signals that 

regulate a cellular response. However, long-term exposures downregulate gene paxillin (see 

thermometer No. 2, Supplementary Figure 2).

The second top-scored pathway map (second lowest p value), CD28 signaling pathway, is 

related to induction of immune responses (Supplementary Figure 3). The T-cells receive 2 

sets of signals from antigen-presenting cells. The first signal is delivered via T-cell receptor 

complex (TCR), the second one proceeds via coreceptor CD28. T-cell receptor and CD28 

are independent signaling units. However, CD28 amplifies signals triggered by TCR 

ligation. CD28 is a T-cell surface protein activated by interacting with the B-cell activation 

antigens CD80 and CD86. The CD28 and CTLA-4 signaling pathways are important 

participants in a very complex group of regulatory events that maintain immunologic 

homeostasis. Lung toxicity biomarkers for lung interstitial congestion and lung perforation 

are major processes in regulation of macrophage migration, suggesting inflammatory 

response plays a large role in modulation of lung toxicity.

When taking a closer look just at the unique long-term exposure data, the enrichment 

analysis shows some additional interesting results such as xenobiotic metabolism enzymes 

are impacted by long-term exposure (Supplementary Figure 4.). The top-scored pathway 

map (indicating by the lowest p value) for the long-term exposure data is the peroxisome 

proliferator-activated receptors (PPARs) transcription pathway (Supplementary Figure 4). 

The PPARs modulate the expression of genes involved in cell proliferation, lipid 

metabolism, and inflammation.

The top-scored map (corresponding to the lowest p value) for long-term exposure 

(Supplementary Figure 4) shows that Mitogen-activated protein enzymes (MEK3) are 

activated in the long-term exposure data set which is an upstream activator of PPARc 

(Supplementary Figure 4). PPARα activates CYPA13 via transcriptional regulation, as seen 

in the MetaCore interactions database. As seen in the Supplementary Figure 4, the protein 

kinase inhibitor of PPARα is downregulated. CYPA13, which is known to metabolize 

carcinogens in cigarette smoke, is upregulated, whereas CYP4F2 and CYP4F3 are 

downregulated, both of which are involved in inactivating the inflammatory mediator 

leukotriene B4. Downregulation of CYP4F2 and CYP4F3 would result in an increased 

inflammatory response via leukotriene B4.

DISCUSSION

The aims of this study were to (1) share a newly recoded PBPK model for BTEX, part of our 

ATSDR toolkit, with the scientific community, (2) explore individual or combined chemical 

published data from various sources to generate or hypothesize about the potential 

mechanisms of toxicity of the TEX mixture, and (3) introduce methodology for new testable 
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hypotheses to address some of the chemical mixtures data gaps previously identified by 

federal agencies. Major data gaps for mixtures include linking chemical exposure to cellular 

pathway disturbance and disease outcome. The application of new technologies and 

alternative methods, as presented in this study, will not only maximize their use, but will 

also help gain information into the mechanisms of mixtures toxicity (Figure 1).

Recoding, Evaluation, and Application of the BTEX PBPK Model

We evaluated and applied the recoded model and ascertained its performance to be the same 

as the original model. The recoded model simulations show a statistically significant 

increase for blood concentrations of xylene after mixture exposure but not for toluene and 

ethylbenzene (Supplementary Table 1). This change was not reflected in the alveolar air 

concentration data obtained during the same experiment (Figure 2).

We demonstrated the applicability of the recoded model using 2 exposure studies. By 

calculating the BHI and HI, the recoded model results show that metabolic inhibition was 

not significant during exposure to < 20 to 30ppm, which is about one-third of the current 

TLV for each chemical. In this range, the additivity assumption held. However, when the 

exposure increases above this level, metabolic inhibition causes a disproportionately higher 

tissue dose to occur. In addition, we determined the validity of the additivity assumption by 

performing UCs for a variety of exposures to TEX. Using internal doses obtained with the 

recoded model at rest and work, the UCs were 2.9 and 4.6 times, respectively. These results 

showed that workers with higher activity might experience a significantly higher absorbed 

dose that could result in 87% higher internal doses. Based on these results, we believe the 

recoded model can successfully simulate internal doses for varying exposure scenarios 

(Supplementary Table 3). The BTEX model coded in Berkeley Madonna is now available 

for use by risk assessors and scientists.

We also used the recoded PBPK model to determine the internal doses to link to the 

disruptor effects based on the genes expression and mechanism of action implicated. Internal 

dose, or blood concentration, is a better predictor than external exposure dose (Meek et al., 

2013). We applied CTD to identify common genetic targets affected by each VOC in the 

TEX mixture and to integrate data that relate gene alterations to biological changes. This 

was followed by an integrative graphical network mapping using MetaCore, which resulted 

in better understanding of mechanisms of lung toxicity of this mixture. This was a novel 

approach because it integrated data from multiple sources and justified utilization of PBPK 

model to predict internal dose, instead of relying on external dose. The following sections 

discuss each phase of the methodology applied in this work.

Biological Interpretation of Gene Expression Data for Individual and Multiple Chemicals

Common genetic targets identified for TEX using CTD.—This analysis identified 

24 genes that are commonly regulated by each of the VOCs and provided insight into 

potential pathways where in vivo effects have been observed, while recognizing that TEX 

mixtures would not necessarily act on the same pathways in the same ways to result in 

additivity effects. The enrichment pathway analysis using the 24 common genes showed that 

TEX compounds impact the Ubiquitin pathway. This provides evidence that combined 
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exposure of TEX could result in synergistic activation or deactivation of this pathway. The 

pathway seems relevant to neurological functions and may be relevant in establishing 

important adverse outcomes for TEX (Supplementary Figure 1).

Competitive metabolic inhibition is the most plausible mechanism of interaction at higher 

concentrations among the TEX components based on the PBPK studies, as well as in vitro 
and in vivo metabolism and toxicity studies for some of the binary component mixtures 

(Tardif et al., 1997). Therefore, due to the apparent lack of competitive metabolic 

interactions in TEX mixtures below approximately 20ppm of each component (one-third of 

TLVs), it is plausible that joint neurotoxic actions among the chemicals will be additive at 

environmental levels of exposure. Exposure to higher concentrations of TEX components 

(ie, above the threshold for metabolic inhibition) would be expected to lead to greater than 

additive increases in blood levels of parent compounds and, consequently, increased concern 

for neurotoxicity. However, it is unclear whether the PBPK model descriptions are adequate 

for predicting interactions from inhalation of TEX mixtures above approximately 200ppm of 

each component, because it has not been tested for these high doses (corresponding to the 

dose reducing the metabolic rate). At a certain dose, the enzymatic saturation is reached, 

reducing the metabolic rate formation and that may increase the toxicity of the parent 

compounds.

Studies that directly examined the joint toxic action of TEX chemicals on the nervous 

system are limited to a few human and animal inhalation studies of some binary mixtures of 

components. Neurotoxicity studies of the ternary mixtures provide agree with the 

predictions of the PBPK studies (ie, joint action is expected to be additive at TEX 

concentrations below approximately 20ppm of each component).

If the concentrations in blood are below the competitive inhibition threshold for each of the 

components, no change can be expected in the proposed pathways leading to toxicity. 

However, such changes in constant concentration below the threshold might have effects that 

will cause some health outcome at long-term exposure.

The CTD results highlighted interconnections, also evident from the independent data 

analysis from Hong et al. study for the up- and downregulated genes related to neurological 

diseases, embryonic development, cellular compromise, cellular adhesion, and cellular 

movement effects.

Gene expression data and enrichment analysis on lung-specific ontologies 
using MetaCore.—An expressed gene set list (up- and downregulated) at the average 

short- and long-term exposed group were subdivided into 9 cluster genes using a 

hierarchical clustering analysis (Hong et al., 2016). In addition, they reported the functional 

categories and annotations of these genes and created a gene function network that show 

how key components (consisting of 5 up- and 12 downregulated genes that also exhibit time-

dependent changes in methylation) of different pathways interact using DAVID and 

Ingenuity tools.
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By applying enrichment analysis on lung-specific ontologies, this study goes beyond just 

listing of DEGs to understand the mechanism of the biological impact on the lung tissue. 

Both approaches, enrichment analysis and gene set analysis are supposed to complement to 

take gene expression levels and leverage existing knowledge about a given organism to 

identify the underlying biological processes and mechanisms.

Using the system’s toxicology module of MetaCore, our study used enrichment analysis to 

understand the toxic impact of TEX to the target organ, lung. As mentioned in the 

“Materials and Methods” section, the enrichment analysis takes into consideration the 

number of DEGs that fall on a given curated ontology and uses hypergeometric mean to 

calculate the significance of this enrichment.

This analysis showed 2 top-scored lung toxicity pathways (maps with the lowest p values), 

based on the enrichment distribution sorted by “common” set (short- and long-term 

exposures), were Ephrin signaling and CD28 signaling. These pathways are involved in cell 

adhesion, cell proliferation, and immune response, suggesting that they may play a crucial 

role in lung toxicity. Consistent with this hypothesis, Ephrin A receptor stimulation has been 

previously shown to increase lung vascular permeability (Carpenter et al., 2012; Larson et 

al., 2008).

In addition, we performed a similar enrichment analysis for the genes that were to unique 

long-term exposure data, which suggests that xenobiotic metabolism enzymes are impacted 

by long-term exposures. The top-scored pathway was the PPARs transcription pathway 

(Supplementary Figure 4). Peroxisome proliferator-activated receptors are nuclear hormone 

receptors and are ligand-induced transcription factors and, whereas these were not sampled 

directly in the data set, many upstream interactors (MEK3, AKT, and PKA-reg) of these 

transcription factors were shown to be upregulated in the long-term exposure group. As 

shown in Supplementary Figure 4, PPARs play a crucial role in signaling of variety of 

different biological processes, including inflammation, and cancer. It is therefore not 

surprising that the PPARs have been explored as candidates for therapeutic intervention to 

treat variety of lung diseases such as asthma and non-small cell lung cancer (Banno et al., 

2018; Li et al., 2011).

Based on our enrichment analyses using the gene lists identified from CTD and Hong et al. 

data, we hypothesize that exposure to TEX mixture may result in disruption of biological 

pathways such as Ubiquitin, Ephrins, CD28, and PPARs. Disruption of these proposed 

pathways can translate into adverse respiratory and neurological outcomes, depending on 

exposure durations. The different genes mapped to these biological pathways have been 

related to alterations of the neurotransmitter system including neural cell death, cell 

proliferation, inflammation, xenobiotic metabolism, signal transduction, and cell processes. 

These proposed pathways are based on experimental data from multiple laboratories and 

have not been examined sufficiently to date comprehensively by an integrated research 

laboratory. Future experimental evaluation of these pathway maps might lead to the 

development of new predictive markers of TEX effects that could translate into new disease 

prevention and clinical use strategies. Specific avenues of laboratory research might include, 

but not limited to, in vitro studies of target cell populations such as lung cells. 
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Complimentary in vivo studies in rodents dosed with TEX mixture could be performed to 

determine if the observed in vitro study findings are observed after in vivo exposure and can 

be extrapolated to human exposure scenarios.

PBPK modeling, gene expression data, signaling pathways, and future 
directions combining PBPK and signaling pathways.—The enrichment analysis 

performed using CTD and the MetaCore analyses provides mechanistic insights of TEX 

mixture and could help the PBPK model to elucidate the biological relevant dosimetry. To 

use this approach a comprehensive characterization of exposure is needed, because humans 

are exposed to multiple chemicals from multiple sources through their daily activities.

The estimated blood concentrations from the recoded PBPK model represent a gold standard 

to understand or interpret the gene expression results driven health effects. Using the model, 

we generated different scenarios of TEX mixture to see the influence of dose and time in the 

blood concentration (Table 3). In the Hong et al. study, workers were exposed short- or long-

term at doses we assumed were close to the TLV values. It is interesting to observe that each 

chemical from the mixture easily reaches a plateau (Cmax) very quickly (approximatively 

few days). This suggests that the maximum blood concentrations will not change whether 

workers are exposed for a month or a year (Table 3). This observation also indicates that the 

metabolic interaction does not seem important if exposure occurs to the combination of 

these VOCs and seems to have a limiting impact on the blood concentration. In fact, another 

parameter that also influence the concentration of chemical in blood is the partition 

coefficient in tissue. This parameter for each tissue will influence not only the concentration 

of parent VOCs in blood, but also the availability of the parent VOCs to be metabolized.

Further research is needed to confirm or validate this proposed approach through 

experimental testing using internal doses estimated by the PBPK model.

The merit of this approach lies in advancement of mixtures risk assessment methodologies 

using the available current knowledge of the TEX mixtures toxicity, using contemporary 

alternative toxicity testing data, and applying computational methods. This work provides a 

Berkeley Madonna BTEX human PBPK model code to obtain a better dosimetry than 

external environmental exposures. Second, the enrichment analysis provides a possible 

pathway for the short- and long-term effects of TEX mixtures.

CONCLUSIONS

Humans are typically exposed to mixtures, but our limited understanding of mixture toxicity 

presents a major challenge in health risk assessment. Because all chemicals and their 

combinations cannot be experimentally tested, mixtures risk assessment provides an 

opportunity to employ data from multiple streams (microarray, HTP, and -omics) and to use 

multiple techniques (statistical and computational) for screening and quantitative risk 

assessments. Toward this, we present a conceptual framework for a combination of 3 

common VOCs (TEX), using PBPK modeling, toxicogenomics data, systems biology 

approaches, and microarray data that may link TEX exposures to diseases. Although data 

gaps primarily need to be filled through experimental laboratory research, scientists can 
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examine potential linkages for combined exposures to these VOCs or others environmental 

chemicals and cellular pathways, as presented here. Progress can be made through strategic 

research using a well-conceived framework to pursue future integrated approaches to better 

assess potential health risks from exposure to mixtures. Toward this, data gaps need to be 

identified and prioritized. Adequate resources (financial, laboratory, multidisciplinary expert 

teams, etc.) are necessary to conduct targeted studies to fill such data gaps. Our approach 

can be applied to other airborne chemicals in the future and may provide support to early 

risk assessment efforts by unraveling biological pathway responses that may contribute to 

adverse health outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic overview of the physiologically based pharmacokinetic (PBPK) and signaling 

pathways for potential use in chemical mixtures assessment. A, Representation of the PBPK 

steps used. Recoding, evaluation, and application of the published (B) toluene, ethylbenzene, 

and xylene (TEX) PBPK model. B, Toluene, ethylbenzene, and xylene pathways analysis. 

Representation of the chemical/gene/disease’s interactions component. Use of published 

high-throughput analysis, toxicogenomic databases, and systems biology platforms to 
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understand pathways impacted by chemical mixtures. C, PBPK/PD and signaling pathways. 

Representation of exploring the A and B components and future connecting directions.
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Figure 2. 
Comparison between original and recoded physiologically based pharmacokinetic model 

simulations and experimental data for toluene (17ppm), ethylbenzene (33ppm), and xylene 

(33ppm) alone and mixed together. All simulations were for 7-h exposures and 5h after 

exposure. BM: recoded Berkeley Madonna model simulation and AcslX: Original model 

simulations. Green line shows individual chemical simulations. Red line shows TEX mixture 

simulations.
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Figure 3. 
Associated common genes (A) and diseases (B) between ternary volatile organic compounds 

components from the Comparative Toxicogenomics Database.
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Figure 4. 
A, Hong et al., gene expression comparison for toluene, ethylbenzene, and xylene (TEX) 

short- and long-term exposures. Gene expression comparison. The gene content is aligned 

between the 2 uploaded experiments (short- and long-term exposure). The intersection set of 

experiments is defined as “common” and marked as a blue/white striped bar. The unique 

genes for the experiments are marked as colored bars 1 and 2, short-term (1): orange bar and 

long-term (2): blue bar. The genes from the “similar” set are present in all but 1 (any) file. B, 
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Top pathway maps impacted by differentially expressed genes common to both short- and 

long-term exposures to TEX.
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Table 2.

Measures of Predictive Performance for Comparing Single TEX and Their Mixtures Experimental Data and 

the Recoded Model Simulations

Chemicals R2 MPE% MAPE% RMSPE%

Single chemicals

 Toluene (Tol) 0.938 −4.01 8.88 12.52

 Ethylbenzene (EBz) 0.937 −11.07 11.34 16.15

 m-Xylene (Xyl) 0.928 6.57 6.57 21.33

Mixed chemicals

 Tol + EBz + Xyl 0.892 −13.10 13.10 17.15

 EBz+Xyl + Tol 0.929 −23.41 23.41 23.12

 Xyl + Tol + EBz 0.923 −3.82 17.49 16.29

Abbreviations: MAPE%, percent median absolute performance error; MPE%, percent median performance error; R2, correlation coefficient; 
RMSPE%, percent root median-square performance error.
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Table 3.

Predicted Blood Concentrations for Different Exposure Scenarios Using the Recoded PBPK Model

Exposure Concentrations Exposure Scenarios

Dose (ppm) Chemical 1 Day 1 Month 1 Year

One-third TLV Predicted blood concentrations (mg/l)

 17 Toluene 0.20 0.21 0.21

 33 Ethylbenzene 0.64 0.70 0.72

 33 Xylene 0.46 0.50 0.50

TLV

 50 Toluene 1.07 1.21 1.21

 100 Ethylbenzene 3.23 3.86 3.82

 100 Xylene 2.78 3.23 3.30

2× TLV

 100 Toluene 2.61 2.95 3.04

 200 Ethylbenzene 8.20 9.83 9.91

 200 Xylene 7.65 8.88 8.89

Exposure time simulations were 8h/day, 5days/week.

Abbreviation: TLV, threshold limit value.
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